Първо да си припомним какво представляват коничните сечения. За окръжността няма какво да говорим. Мисля, че всеки знае дефиницията за окръжност. Какво представлява параболата? Накратко: нека имаме една права b и точка F не лежаща на b. Тогава множеството от точки в равнината, които се намират на равни разстояния от точката F и правата b образуват парабола. Това най-ясно се вижда от следният чертеж.

Тук |Т1 P1 | = |P1 F|, |Т2 P2 | = |P2 F| и т.н. Като точките P1, P2, …. са от параболата. Как всъщност се построява параболата? Избираме си върху правата b произволна точка T. Свързваме я с F. Издигаме от T перпендикуляр t. Построяваме симетралата s на TF. Пресечната точка на s и t е точка от нашата парабола. Надявам се да съм обяснил достатъчно ясно как се построява парабола. Сега да си зададем следният въпрос: Каква фигура ще получим, ако построим парабола използвайки вместо права b някаква крива например окръжност. Няма да пояснявам какво е разстояние между точка и окръжност, тъй като това се знае от училище. И така нека имаме една окръжност k и точка F лежаща извън k.

Построяваме лъч с начало О и точка М1 като М1 лежи в дъгата MH, където FH е допирателна към k през F. Построяваме H1 на равни разстояния от F и M1 т.е. построяваме точка от парабола с фокус F и спрямо k. Но всъщност лесно се вижда, че H1 е и точка от хипербола, защото каквато и точка Hi да построим (по този начин) ще имаме |OHi| - |HiF| ще е константа. Така построявайки парабола спрямо F и k всъщност построяваме хипербола. Окончателно ще получим:

Няма коментари:
Публикуване на коментар